
Computing Gradients and Hessian from Objective Values
(Nonlinear Optimization without Gradients)

John Kormylo

Our goal is to minimize objective function J(x) with respect to parameter vector x for the case
where computing gradients costs as much as computing n objective functions, where n is the number of
parameters in x. We assume that J(x) is relatively well behaved over the region of interest (continuous to
the third derivative). Consequently we would like to use Newton’s method [1] or a variant thereof, which
requires a gradient and Hessian.

The approach here will be to estimate the gradient and Hessian at some location x0 using a least
squares fit over a list of previously generated values. The idea is that by using far more points than needed
to get a solution, an occasional oddball objective function value will not entirely unhinge the algorithm, nor
need we overly concern ourselves whether the given vectors form a basis.

Assume a model of the form

J(x) ≈ J(x0) + g′(x− x0) + (x− x0)′H(x− x0) (1)

where g and H are the gradient and Hessian at x0, the current best set of parameters. We want estimates
of g and H so as to minimize error function

N∑
i=1

[
J(xi) − J(x0) − g′(xi − x0) − (xi − x0)′H(xi − x0)

]2
where the xi for i = 1, 2, . . . , N are a list of previously used parameters. This can be rewritten as

N∑
i=1

[
∆J(i) − g′∆x(i) − ∆x′(i)H∆x(i)

]2
(2)

using the notation ∆J(i) = J(xi) − J(x0) and ∆x(i) = xi − x0.

Optimizing with respect to g we get

2

N∑
i=1

[
∆J(i) − g′∆x(i) − ∆x′(i)H∆x(i)

]
∆x(i) = 0

and therefore
N∑
i=1

[
g∆x(i) + ∆x′(i)H∆x(i)

]
∆x(i) =

N∑
i=1

∆J(i)∆x(i) . (3)

Optimizing with respect to H we get

2

N∑
i=1

[
∆J(i) − g′∆x(i) − ∆x′(i)H∆x(i)

]
∆x(i)∆x′(i) = 0

and therefore
N∑
i=1

[
g′∆x(i) + ∆x′(i)H∆x(i)

]
∆x(i)∆x′(i) =

N∑
i=1

∆J(i)∆x(i)∆x′(i) . (4)

There is no simple matrix solution for H, but (4) does represent n2 scalar equations to match the n2 scalar
unknowns in H. One simply has to map the elements of g and H into a single vector.



For n = 2 we can define this vector as

v′ =
[
g1 g2 h1,1 h1,2 + h2,1 h2,2

]
(5)

taking advantage of symmetry. If we then define vector u(i) as

u′(i) =
[

∆x1(i) ∆x2(i) ∆x2
1(i) ∆x1(i)∆x2(i) ∆x2

2(i)
]

(6)

one can show that
u′(i)v = g′∆x(i) + ∆x′(i)H∆x(i) (7)

for i = 1, 2, . . . , N . Extending this for n > 2 is fairly straight forward.

We can now combine equations (3) and (4) as(
N∑
i=1

u(i)u′(i)

)
v =

N∑
i=1

∆J(i)u(i) (8)

and solve for v. Note that since H is symmetrical, from (5) we have

h1,2 = h2,1 = v4/2 .

The minimum number of points xi (including x0) needed for a solution is n+n(n+1)/2+1 or more
simply (n + 1)(n + 2)/2. Generally one would like to have 3 points in every direction, rather than just the
single best point from each line search. It should be noted that using Newton’s method with these estimates
when n = 1 is equivalent to performing a line search by quadratic curve fitting.

References

[1] David G. Luenberger, Introduction to Linear and Nonlinear Programming, Addison-Wesley Publishing,
1973.


