
On Computing Sines and Cosines
John Kormylo

The standard method used to compute sines and cosines are the Taylor’s series (polynomial) ap-
proximations

sin(x) = x− x3

3!
+
x5

5!
+ · · · + (−1)n

x2n+1

(2n+ 1)!
(1)

cos(x) = 1 − x2

2!
+
x4

4!
+ · · · + (−1)n

x2n

(2n)!
(2)

where (n + 1) is the number of terms used. The advantage of the Taylor’s series approximation is that it
can generate an answer to any desired accuracy by adding more terms. It is not, however, particularly fast.

For Fast Fourier Transforms (FFT) one generally pre-computes an array of sines and cosines, since
only certain values are used (x = 0, 2π/N, 4π/N, 6π/N, . . . , 2π(N − 1)/N where N is a power of 2). This
could be done using either the half-angle formulas

sin(x) =

√
1 − cos(2x)

2
(3)

cos(x) =

√
1 + cos(2x)

2
(4)

or the polynomial approximations for x = π/8, π/16, . . . , π/N , then using the angle addition formulas

sin(a+ b) = sin(a) cos(b) + cos(a) sin(b) (5)

cos(a+ b) = cos(a) cos(b) − sin(a) sin(b) (6)

to fill in the array.

Specifically, one would start by filling in the known array values for x = 0, π/4, π/2, . . . , 7π/4, com-
puting sin(π/8) and cos(π/8), then filling in the array values for x = π/8, (π/4+π/8), (π/2+π/8), . . . , (7π/4+
π/8). In the next step one would compute sin(π/16) and cos(π/16) and fill in the array values for x =
π/16, (π/8 + π/16), (π/4 + π/16), . . . , (15π/8 + π/16). This would continue for a total of log2(N/8) steps to
generate all N values.

Errors would accumulate at each step, but there are only a few steps.

DSP chips often include a table of sine and cosine value in ROM. For graphic applications it is
generally adequate to grab the value for sin(x) in the table nearest to the desired x value. A linearly
interpolated value can be obtained for the cost of a couple of multiplications and additions. The cubic
interpolation solution is easy to obtain since the slopes are already known and stored in the table.

d

dx
sin(x) = cos(x)

d

dx
cos(x) = − sin(x)

Assume a solution of the form

sin(x) ≈ fi(x) = ai(x− xi)
3 + bi(x− xi)

2 + ci(x− xi) + di (7)

over the domain xi ≤ x ≤ xi+1. The coefficients are chosen to satisfy

fi(xi) = sin(xi)

fi(xi+1) = sin(xi+1)

f ′i(xi) = cos(xi)

f ′i(xi+1) = cos(xi+1)



where
f ′i(x) = 3ai(x− xi)

2 + 2bi(x− xi) + ci

and the xi correspond to the stored values in the table. One can easily show that

di = sin(xi) (8)

ci = cos(xi) (9)

bi = 3
sin(xi+1) − sin(xi)

(xi+1 − xi)2
− cos(xi+1) + 2 cos(xi)

xi+1 − xi
(10)

ai =
cos(xi+1) + cos(xi)

(xi+1 − xi)2
− 2

sin(xi+1) − sin(xi)

(xi+1 − xi)3
(11)

satisfies the given conditions. It would be a good idea to pre-compute and store the ai and bi coefficients.

Repeating this for cosines, we now have

cos(x) ≈ gi(x) = ai(x− xi)
3 + bi(x− xi)

2 + ci(x− xi) + di (12)

such that

gi(xi) = cos(xi)

gi(xi+1) = cos(xi+1)

g′i(xi) = − sin(xi)

g′i(xi+1) = − sin(xi+1)

which has the solution

di = cos(xi) (13)

ci = − sin(xi) (14)

bi = 3
cos(xi+1) − cos(xi)

(xi+1 − xi)2
+

sin(xi+1) + 2 sin(xi)

xi+1 − xi
(15)

ai = −2
cos(xi+1) − cos(xi)

(xi+1 − xi)3
− sin(xi+1) + sin(xi)

(xi+1 − xi)2
. (16)

Each calculation requires three multiplications, three additions and one subtraction (not counting
the calculation to determine which table entry to use). The accuracy of any table depends on how closely the
xi are spaced. While cubic interpolation can produce the same degree of accuracy with a greater spacing,
it also requires 3 times as much storage for the coefficients. It is neither the fastest nor the most accurate
approach, but does possess a certain elegance.


