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When transition matrix @ is invertable, from equation (34) in the tutorial we see that
x(k|N) = @' [x(k + 1|N) — Ta(k|N))] (1)

which can be computed recursively for k= N, N —1,....0 using
u(k|N) =b(k)+ QT'r(k + 1) (2)

and where r(k) is also computed recursively during the second pass using equation (33)
from the tutorial.

This has the advantage that it does not require storing x(k|k — 1) or P(k|k — 1) for
all k = 1,2,..., N between the first and second passes. But besides requiring that ® be
invertable, if any of the eigenvalues of ® are inside the unit circle, then the corresponding
eigenvalue in @ ! will be outside the unit circle and the recursion in (1) will be numerically
unstable.

If @ is of rank n — 1 (where n is the dimension of the state vector), then there will
exists vectors f and g such that [® + gf’] is invertable. The proof becomes obvious if you
perform a singular value decomposition of matrix ®.

Create an auxiliary output of our state vector model of the form

y(k) = £'x(k) (3)
so that the state vector model can be reformulated as
x(k+1) = [® + gf'|x(k) + Tu(k) — gy(k) (4)
and therefore (1) can be replaced by
X(kIN) = [@ + gf'] 7" [%(k + 1|N) — Ta(k[N) + gg(k|N)] (5)
where
G(kIN) = g(k[k — 1) + £'P(k|k — Dx(k) . (6)

So instead of saving vector x(k|k — 1) and matrix P(k|k — 1) we merely have to save scalar
y(k|k — 1) and vector P(k|k — 1)f between the two passes.
Of particular interest is when f and g are chosen from the singular value decomposition
of ® so that
of =0=3'g

and

fff=1=g'g

In this case, y(k) contains the portion of x(k) which is about to be lost forever by the
recursion

x(k +1) = &x(k) 4+ Tu(k)
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and therefore cannot be reconstructed from future observations. Also, one can show that
[@+gf]™ = A+1g (7)
where A is the pseudo-inverse of ® based on its sigular value decomposition, in which case
Ag=0=A'f and ®A=1-gg'
Substituting (7) into (5) we have
xX(k|N)=A[x(k + 1|N)—Tua(k|N)] + fg(k|N) (8)
since
g'[x(k +1|N) —Tu(k|N)] = g'®x(k|N) =0
Multiplying both sides of (8) by f' gives us
FR(KIN) = (kI (9)
while multiplying by @ yields
Ox(k|N) =%x(k +1|N) —T'a(k|N) (10)

as expected.

If the rank m of @ is less than n — 1, one must include additional auxilliary outputs,
one for each zero valued singular value of ®. This corresponds to replacing the scalar y(k)
with a vector y(k) of dimension n —m.

Stability

Let us assume that @ is invertable, but the algorithm in (1) is numerically unstable.
One can show that an algorithm of the form

X(k|N) = [I —gf']o7" [%(k + 1|N) — Ta(k|N)] + gg(k|N) (12)

can be made stable if f and g satisfy observability and controlability requirements. In fact,
any numerical error can be completely removed in n steps if

1k 1 k=0
fq’g_{o k=1,2,...,n—1 (13)

as shown in the Appendix. Note that multiplying both sides of (12) by f' gives us (9) as
before.
Given f one can compute g using

£/ -1
f'o 1
0
g— | o : (14)
f/(I);z—l 0
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provided the matrix is invertable (which incidentally is the definition of observablilty).

Any f which satisfies the observability requirement will produce good results. A logical
choice would be the vector associated with the minimum singular value of ®. Unfortunately,
there is no simple solution for the optimal f (unless g is given). The best one can do is to
assume a quadratic objective function and perform nonlinear optimization for a specific ®
matrix.

Let assume that the error covariance due to a numerical error e in X(k|N) can be
represented as

E{ee't = P(0) = I (15)

since numerical errors tend to be random, uncorrelated and equally likely to occur any-
where. The absolute magnitude in this case doesn’t matter. As this error propagates
through (12) the resulting error covariances are given by

P(k)=(I—gf® 'P(k—1)®' (I —fg) (16)

for k =1,2,...,n. After n steps we assume the error has been totally eliminated.
Let us now assume an objective function of the form

J=> tr{P(k)}
k=1

F {50 [ arenpee 101 ) - ]

f'g —1
f'dg

(17)

+ v/
f’(I)"_lg

where v and the S(k) are Lagrange multipliers. Minimizing J with respect to v gives us
(13), while miminizing with respect to S(k) gives us (16). Minimizing J with respect to
P(k) gives us

S(k)y=I+9' " '(I—1fg)S(k+1)(I—gf")®™! (18)

starting from S(n) = I. Minimizing J with respect to g gives us
v=(f @f ... ®" ') Y 2S(k)(I-gf )@ P(k—1)0''f (19)
k=1

since S(k) = S'(k) and P(k—1) = P'(k —1). All that remains is to compute the gradient

dJ

—e=(g g ... 2lg)v- > 207 P(k - 1) (I - fg))S(k)g  (20)
k=1

to use with a nonlinear optimization algorithm.
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Three Pass Algorithm

Of course, an even simpler solution is to use a third pass of the form
x(k+ 1|N) = &x(k|N) + T'a(k|N)

starting from

%(0|N) = %(0) + P(0)r(0)

and storing u(k|N) between the second and third passes. Then again, this is numerically
stable only if all the eigenvalues of ® are inside the unit circle.



Appendix
Optimal Control Tutorial

Consider an nth order state vector model of the form
x(k+1) = ox(k) — ga(k) (A-1)
where matrix @ is invertable. Our goal is to find a sequence a(k) which will force x(n) =0
for a given initial state x(0).
(When matrix ® is not invertable, there is still an optimal control sequence, but it

takes less than n steps to achieve and the solution is not unique.)
One can easily show that

x(n)=®"x(0) - (" 'g d"?g ... Pg g) . (A-2)
and setting x(n) = 0 gives us
= (d"lg o7 2g ... dg g) ' o"x(0) (A-3)

a(n‘— 1)

assuming that the matrix is invertable (which is the definition of controlablity).
Now let us find a vector f such that

£'x(0) = a(0) Vx(0) . (A-4)
From (A-3) we can write
f'x(0)=(1 0 0 ... 0)(®"'g @"2g ... &g g) ' &"x(0) Vx(0)
and therefore
ff=(1 00 ... 0)(&"'g ¥ 2g ... dg g) " . (A-5)
From (A-5) we can write
f'o " (o lg o ?g ... dg g)=(1 0 0 ... 0)

or equivalently

(A-6)



In fact, every step of the optimal control sequence is given by
a(k)=f'x(k) Vk=0,1,...,n—1.
and therefore we can rewrite (A-1) as
x(k+1) =[® — gf']x(k) . (A-7)
From (A-6) and (A-7) we see that
o+ "x(n) =£'® 'x(k+1)=0 Vk=0,1,...,n— 1.

or equivalently
fl
f'®
: ® "x(n)=0 . (A-8)
f/(I);z—l

When the matrix in (A-8) is invertable (which is the definition of observability), then (A-8)
requires that x(n) = 0 when it is generated using (A-7).



